Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Data ; 11(1): 429, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664431

While research has unveiled and quantified brain markers of abnormal neurodevelopment, clinicians still work with qualitative metrics for MRI brain investigation. The purpose of the current article is to bridge the knowledge gap between case-control cohort studies and individual patient care. Here, we provide a unique dataset of seventy-three 3-to-17 years-old healthy subjects acquired with a 6-minute MRI protocol encompassing T1 and T2 relaxation quantitative sequence that can be readily implemented in the clinical setting; MP2RAGE for T1 mapping and the prototype sequence GRAPPATINI for T2 mapping. White matter and grey matter volumes were automatically quantified. We further provide normative developmental curves based on these two imaging sequences; T1, T2 and volume normative ranges with respect to age were computed, for each ROI of a pediatric brain atlas. This open-source dataset provides normative values allowing to position individual patients acquired with the same protocol on the brain maturation curve and as such provides potentially useful quantitative biomarkers facilitating precise and personalized care.


Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/growth & development , Child , Child, Preschool , Adolescent , Male , Female , White Matter/diagnostic imaging , White Matter/growth & development , Gray Matter/diagnostic imaging
2.
J Exp Child Psychol ; 241: 105862, 2024 May.
Article En | MEDLINE | ID: mdl-38320357

Children are strong imitators, which sometimes leads to overimitation of causally unnecessary actions. Here, we tested whether learning from a peer decreases this tendency. First, 65 7- to 10-year-old children performed the Hook task (i.e., retrieve a reward from a jar with tools) with child or adult demonstrators. The overimitation rate was lower after watching a peer versus an adult. Second, we tested whether experiencing peer-to-peer learning versus adult-driven learning (i.e., Montessori or traditional pedagogy) affected overimitation. Here, 66 4- to 18-year-old children and adolescents performed the Hook task with adult demonstrators only. Montessori-schooled children had a lower propensity to overimitate. These findings emphasize the importance of the teaching model across the school years. Whereas peer models favor selective imitation, adult models encourage overimitation.


Imitative Behavior , Schools , Child , Adult , Humans , Adolescent , Child, Preschool , Reward
3.
Children (Basel) ; 10(12)2023 Dec 12.
Article En | MEDLINE | ID: mdl-38136116

Although adults and children differ in self-vs.-other perception, a developmental perspective on this discriminative ability at the brain level is missing. This study examined neural activation for self-vs.-other in a sample of 39 participants spanning four different age groups, from 4-year-olds to adults. Self-related stimuli elicited higher neural activity within two brain regions related to self-referential thinking, empathy, and social cognition processes. Second, stimuli related to 'others' (i.e., unknown peer) elicited activation within nine additional brain regions. These regions are associated with multisensory processing, somatosensory skills, language, complex visual stimuli, self-awareness, empathy, theory of mind, and social recognition. Overall, activation maps were gradually increasing with age. However, patterns of activity were non-linear within the medial cingulate cortex for 'self' stimuli and within the left middle temporal gyrus for 'other' stimuli in 7-10-year-old participants. In both cases, there were no self-vs.-other differences. It suggests a critical period where the perception of self and others are similarly processed. Furthermore, 11-19-year-old participants showed no differences between others and self within the left inferior orbital gyrus, suggesting less distinction between self and others in social learning. Understanding the neural bases of self-vs.-other discrimination during development can offer valuable insights into how social contexts can influence learning processes during development, such as when to introduce peer-to-peer teaching or group learning.

4.
Appl Neuropsychol Child ; : 1-12, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38015558

While the survival rate of very preterm (VPT) infants has increased in the last decades, they are still at risk of developing long-term neurodevelopmental impairments, especially regarding self-regulatory abilities, and goal-directed behaviors. These skills rely on executive functions (EFs), an umbrella term encompassing the core capacities for inhibition, shifting, and working memory. Existing comprehensive tests are time-consuming and therefore not suitable for all pediatric neuropsychological assessments. The Flanker task is an experimental computer game having the advantage to last less than ten minutes while giving multiple EFs measures. Here, we tested the potency of this task in thirty-one VPT children aged 8-10 years during their clinical assessment. First, we found that VPT children performed in the norm for most clinical tests (i.e., WISC-V, BRIEF, and NEPSY) except for the CPT-3 where they were slower with more omission errors, which could indicate inattentiveness. Second, some Flanker task scores were correlated with standardized clinical testing without resisting to multiple comparisons correction. Finally, compared to full-term children, VPT children showed poorer performance in global EFs measure and lower accuracy in the Flanker task. These findings suggest that this child-friendly version of the Flanker task demonstrated a reasonable sensitivity in capturing EFs with good discrimination between VPT and term children despite VPT children's mild difficulties. It may represent a promising tool for neuropsychological assessments and be suitable as a screening test, providing further validating larger studies. Moreover, while VPT schoolchildren globally display normal intelligence, subtle difficulties that seem to relate to EFs are observed.

5.
Brain Sci ; 13(9)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37759871

Brain hemispheres develop rather symmetrically, except in the case of pathology or intense training. As school experience is a form of training, the current study tested the influence of pedagogy on morphological development through the cortical thickness (CTh) asymmetry index (AI). First, we compared the CTh AI of 111 students aged 4 to 18 with 77 adults aged > 20. Second, we investigated the CTh AI of the students as a function of schooling background (Montessori or traditional). At the whole-brain level, CTh AI was not different between the adult and student groups, even when controlling for age. However, pedagogical experience was found to impact CTh AI in the temporal lobe, within the parahippocampal (PHC) region. The PHC region has a functional lateralization, with the right PHC region having a stronger involvement in spatiotemporal context encoding, while the left PHC region is involved in semantic encoding. We observed CTh asymmetry toward the left PHC region for participants enrolled in Montessori schools and toward the right for participants enrolled in traditional schools. As these participants were matched on age, intelligence, home-life and socioeconomic conditions, we interpret this effect found in memory-related brain regions to reflect differences in learning strategies. Pedagogy modulates how new concepts are encoded, with possible long-term effects on knowledge transfer.

6.
Dev Sci ; 26(6): e13389, 2023 11.
Article En | MEDLINE | ID: mdl-36942648

Fostering creative minds has always been a premise to ensure adaptation to new challenges of human civilization. While some alternative educational settings (i.e., Montessori) were shown to nurture creative skills, it is unknown how they impact underlying brain mechanisms across the school years. This study assessed creative thinking and resting-state functional connectivity via fMRI in 75 children (4-18 y.o.) enrolled either in Montessori or traditional schools. We found that pedagogy significantly influenced creative performance and underlying brain networks. Replicating past work, Montessori-schooled children showed higher scores on creative thinking tests. Using static functional connectivity analysis, we found that Montessori-schooled children showed decreased within-network functional connectivity of the salience network. Moreover, using dynamic functional connectivity, we found that traditionally-schooled children spent more time in a brain state characterized by high intra-default mode network connectivity. These findings suggest that pedagogy may influence brain networks relevant to creative thinking-particularly the default and salience networks. Further research is needed, like a longitudinal study, to verify these results given the implications for educational practitioners. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=xWV_5o8wB5g . RESEARCH HIGHLIGHTS: Most executive jobs are prospected to be obsolete within several decades, so creative skills are seen as essential for the near future. School experience has been shown to play a role in creativity development, however, the underlying brain mechanisms remained under-investigated yet. Seventy-five 4-18 years-old children, from Montessori or traditional schools, performed a creativity task at the behavioral level, and a 6-min resting-state MR scan. We uniquely report preliminary evidence for the impact of pedagogy on functional brain networks.


Brain Mapping , Creativity , Child , Humans , Brain , Brain Mapping/methods , Longitudinal Studies , Magnetic Resonance Imaging/methods , Schools , Child, Preschool , Adolescent
7.
Front Hum Neurosci ; 16: 1058803, 2022.
Article En | MEDLINE | ID: mdl-36684844

Introduction: Numerous studies have demonstrated the benefits of creativity from bilingualism. Divergent thinking and convergent thinking are considered the two most important components of creativity. Various (although not all) studies have concluded that bilingual children outperform monolingual children in divergent thinking, however, no study on children or adolescents so far has explored the relation between bilingualism and convergent thinking, or the brain structural basis of interaction between bilingualism and creativity. This study aimed to explore the impact of bilingualism on both convergent and divergent thinking in children and adolescents based on neuropsychological assessments, and the possible structural basis of the effect of bilingualism on creativity by a whole-brain analysis of regional gray matter volume (rGMV) and cortical thickness in children and adolescents. Methods: 92 healthy children and adolescents of age 4-18 were recruited from public or private schools in the French-speaking side of Switzerland. Demographic data of the participants were collected, including gender, age, pedagogy, usage of language, and parents' socioeconomic status. Most of the participants underwent the neuropsychological assessments of divergent thinking, convergent thinking, and fluid intelligence. Structural image data of 75 participants were analyzed. Both voxel-based morphometry (VBM) and surface-based morphometry (SBM) were processed, to perform the analyses of rGMV and cortical thickness respectively. Results: The outcomes indicated that convergent thinking, but not divergent thinking benefits from bilingualism in children and adolescents. However, this bilingual advantage appears to weaken across development. Unexpectedly, no significant correlation between morphometry and bilingualism was found. Neither divergent thinking scores nor convergent thinking scores showed any significant correlation with rGMV. However, the whole brain SBM showed that the cortical thickness in the right supplementary motor area (SMA) was negatively correlated with convergent thinking scores, which suggested that the children and adolescents with higher convergent thinking abilities may have thinner, more mature, and more activated cortex in the right SMA. Discussion: Bilingualism and cortical thinness in the right SMA might facilitate convergent thinking independently, by enhancing this selective ability.

8.
NPJ Sci Learn ; 6(1): 35, 2021 Dec 09.
Article En | MEDLINE | ID: mdl-34887430

Education is central to the acquisition of knowledge, such as when children learn new concepts. It is unknown, however, whether educational differences impact not only what concepts children learn, but how those concepts come to be represented in semantic memory-a system that supports higher cognitive functions, such as creative thinking. Here we leverage computational network science tools to study hidden knowledge structures of 67 Swiss schoolchildren from two distinct educational backgrounds-Montessori and traditional, matched on socioeconomic factors and nonverbal intelligence-to examine how educational experience shape semantic memory and creative thinking. We find that children experiencing Montessori education show a more flexible semantic network structure (high connectivity/short paths between concepts, less modularity) alongside higher scores on creative thinking tests. The findings indicate that education impacts how children represent concepts in semantic memory and suggest that different educational experiences can affect higher cognitive functions, including creative thinking.

9.
Epilepsy Res ; 177: 106771, 2021 11.
Article En | MEDLINE | ID: mdl-34562678

OBJECTIVE: Epilepsy with myoclonic atonic seizure (EMAS) occurs in young children with previously normal to subnormal development. The outcome ranges from seizure freedom with preserved cognitive abilities to refractory epilepsy with intellectual disability (ID). Routine brain imaging typically shows no abnormalities. We aimed to compare the brain morphometry of EMAS patients with healthy subjects several years after epilepsy onset, and to correlate it to epilepsy severity and cognitive findings. METHODS: Fourteen EMAS patients (4 females, 5-14 years) and 14 matched healthy controls were included. Patients were classified into three outcome groups (good, intermediate, poor) according to seizure control and cognitive and behavioral functioning. Individual anatomical data (T1-weighted sequence) were processed using the FreeSurfer pipeline. Cortical volume (CV), cortical thickness (CT), local gyrification index (LGI), and subcortical volumes were used for group-comparison and linear regression analyses. RESULTS: Morphometric comparison between EMAS patients and healthy controls revealed that patients have 1) reduced CV in frontal, temporal and parietal lobes (p = <.001; 0.009 and 0.024 respectively); 2) reduced CT and LGI in frontal lobes (p = 0.036 and 0.032 respectively); and 3) a neat cerebellar volume reduction (p = 0.011). Neither the number of anti-seizure medication nor the duration of epilepsy was related to cerebellar volume (both p > 0.62). Poor outcome group was associated with lower LGI. Patients in good and intermediate outcome groups had a comparable LGI to their matched healthy controls (p > 0.27 for all lobes). CONCLUSIONS: Structural brain differences were detectable in our sample of children with EMAS, mainly located in the frontal lobes and cerebellum. These findings are similar to those found in patients with genetic/idiopathic generalized epilepsies. Outcome groups correlated best with LGI. Whether these anatomical changes reflect genetically determined abnormal neuronal networks or a consequence of sustained epilepsy remains to be solved with prospective longitudinal studies.


Electroencephalography , Epilepsy , Brain/diagnostic imaging , Child , Child, Preschool , Epilepsy/complications , Female , Humans , Magnetic Resonance Imaging , Prospective Studies , Seizures/complications , Seizures/diagnostic imaging
10.
Dev Sci ; 24(3): e13045, 2021 05.
Article En | MEDLINE | ID: mdl-33090680

Performance monitoring (PM) is central to learning and decision making. It allows individuals to swiftly detect deviations between actions and intentions, such as response errors, and adapt behavior accordingly. Previous research showed that in adult participants, error monitoring is associated with two distinct and robust behavioral effects. First, a systematic slowing down of reaction time speed is typically observed following error commission, which is known as post-error slowing (PES). Second, response errors have been reported to be automatically evaluated as negative events in adults. However, it remains unclear whether (1) children process response errors as adults do (PES), (2) they also evaluate them as negative events, and (3) their responses vary according to the pedagogy experienced. To address these questions, we adapted a simple decision-making task previously validated in adults to measure PES as well as the affective processing of response errors. We recruited 8- to 12-year-old children enrolled in traditional (N = 56) or Montessori (N = 45) schools, and compared them to adults (N = 46) on the exact same task. Results showed that children processed correct actions as positive events, and that adults processed errors as negative events. By contrast, PES was similarly observed in all groups. Moreover, the former effect was observed in traditional schoolchildren, but not in Montessori schoolchildren. These findings suggest that unlike PES, which likely reflects an age-invariant attention orienting toward response errors, their affective processing depends on both age and pedagogy.


Attention , Cognition , Adult , Child , Humans , Psychomotor Performance , Reaction Time
11.
NPJ Sci Learn ; 5: 11, 2020.
Article En | MEDLINE | ID: mdl-32699649

The development of error monitoring is central to learning and academic achievement. However, few studies exist on the neural correlates of children's error monitoring, and no studies have examined its susceptibility to educational influences. Pedagogical methods differ on how they teach children to learn from errors. Here, 32 students (aged 8-12 years) from high-quality Swiss traditional or Montessori schools performed a math task with feedback during fMRI. Although the groups' accuracies were similar, Montessori students skipped fewer trials, responded faster and showed more neural activity in right parietal and frontal regions involved in math processing. While traditionally-schooled students showed greater functional connectivity between the ACC, involved in error monitoring, and hippocampus following correct trials, Montessori students showed greater functional connectivity between the ACC and frontal regions following incorrect trials. The findings suggest that pedagogical experience influences the development of error monitoring and its neural correlates, with implications for neurodevelopment and education.

12.
Sci Rep ; 10(1): 1394, 2020 02 04.
Article En | MEDLINE | ID: mdl-32019951

The capacity to integrate information from different senses is central for coherent perception across the lifespan from infancy onwards. Later in life, multisensory processes are related to cognitive functions, such as speech or social communication. During learning, multisensory processes can in fact enhance subsequent recognition memory for unisensory objects. These benefits can even be predicted; adults' recognition memory performance is shaped by earlier responses in the same task to multisensory - but not unisensory - information. Everyday environments where learning occurs, such as classrooms, are inherently multisensory in nature. Multisensory processes may therefore scaffold healthy cognitive development. Here, we provide the first evidence of a predictive relationship between multisensory benefits in simple detection and higher-level cognition that is present already in schoolchildren. Multiple regression analyses indicated that the extent to which a child (N = 68; aged 4.5-15years) exhibited multisensory benefits on a simple detection task not only predicted benefits on a continuous recognition task involving naturalistic objects (p = 0.009), even when controlling for age, but also the same relative multisensory benefit also predicted working memory scores (p = 0.023) and fluid intelligence scores (p = 0.033) as measured using age-standardised test batteries. By contrast, gains in unisensory detection did not show significant prediction of any of the above global cognition measures. Our findings show that low-level multisensory processes predict higher-order memory and cognition already during childhood, even if still subject to ongoing maturation. These results call for revision of traditional models of cognitive development (and likely also education) to account for the role of multisensory processing, while also opening exciting opportunities to facilitate early learning through multisensory programs. More generally, these data suggest that a simple detection task could provide direct insights into the integrity of global cognition in schoolchildren and could be further developed as a readily-implemented and cost-effective screening tool for neurodevelopmental disorders, particularly in cases when standard neuropsychological tests are infeasible or unavailable.


Cognition , Perception , Psychology, Child/statistics & numerical data , Adolescent , Child , Child Development , Child, Preschool , Female , Humans , Intelligence , Male , Memory, Short-Term , Recognition, Psychology , Regression Analysis
13.
PLoS One ; 14(11): e0225319, 2019.
Article En | MEDLINE | ID: mdl-31751404

Studies have shown scholastic, creative, and social benefits of Montessori education, benefits that were hypothesized to result from better executive functioning on the part of those so educated. As these previous studies have not reported consistent outcomes supporting this idea, we therefore evaluated scholastic development in a cross-sectional study of kindergarten and elementary school-age students, with an emphasis on the three core executive measures of cognitive flexibility, working memory update, and selective attention (inhibition). Two hundred and one (201) children underwent a complete assessment: half of the participants were from Montessori settings, while the other half were controls from traditional schools. The results confirmed that Montessori participants outperformed peers from traditional schools both in academic outcomes and in creativity skills across age groups and in self-reported well-being at school at kindergarten age. No differences were found in global executive functions, except working memory. Moreover, a multiple mediations model revealed a significant impact of creative skills on academic outcomes influenced by the school experience. These results shed light on the possibly overestimated contribution of executive functions as the main contributor to scholastic success of Montessori students and call for further investigation. Here, we propose that Montessori school-age children benefit instead from a more balanced development stemming from self-directed creative execution.


Academic Success , Creativity , Educational Measurement , Executive Function , Child , Child, Preschool , Female , Humans , Male , Models, Theoretical , Self Report , Social Class
...